Quantifying Gains in Solar Project Value from Quality Satellite & Ground Data

May 23, 2017
Skip Dise, Clean Power Research
Forces Shaping the Energy Transformation

- Digital Users
- Changing Electric Resource Mix
- Consumer Behavior
- Power Generation
- Increasing Interest in Energy Products
- Distribution Optimization
TODAY’S FOCUS

- Quality & Type of Ground Measurements
- Use of SolarAnywhere Satellite Data
- Impacts on Project Uncertainty
- Gains in Project Value
- Return on Ground Campaign
BEYOND THE SCOPE

- TMY3 or other public data set comparisons
- Shifts in P50 from satellite to ground tuning
- Factors unrelated to solar resource uncertainty
- Bank negotiated financial terms
- Probability of Exceedance methods
TIGHTENING UNCERTAINTY OF P99

Investment in Ground Measurements Can Increase P99
• Version 3.2
• Data Validated and Widely Accepted
• Uncertainty Rate Known and Accepted
• Long History and Data Currency
• Spatially Precise
• Built for Solar

Source: https://www.solaranywhere.com/validation/leadership-bankability/
BEST PRACTICES FOR GROUND MEASUREMENT

• High quality, maintained instrumentation
• Redundant irradiance measurements
• 1 year minimum campaign, 2 preferred¹
• Weekly technician visits
• Actionable data quality program
• Descriptive metadata

Secondary Standard GHI
Secondary Standard GHI
+ GroundWork PVSOIL
Secondary Standard GHI
+ GroundWork PVSOIL
+ Diffuse
Secondary Standard GHI
+ Diffuse
+ DNI
SOLAR PROJECT UNCERTAINTY FACTORS

<table>
<thead>
<tr>
<th>Factor</th>
<th>Data Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Resource</td>
<td>Ground and/or satellite irradiance</td>
<td>3.0-5.0%</td>
</tr>
<tr>
<td>Interannual Variability</td>
<td>Satellite history</td>
<td>2.5-8.0%</td>
</tr>
<tr>
<td>Transposition to Plane of Array</td>
<td>Decomposition: modeled or ground diffuse irradiance Transposition: calculated</td>
<td>3.5-12.7%</td>
</tr>
<tr>
<td>Soiling</td>
<td>Estimated or ground soiling studies</td>
<td>1.0%-4.0%</td>
</tr>
<tr>
<td>Energy Simulation, Plant Loss and Degradation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TOTAL PROJECT UNCERTAINTY

\[\varepsilon_p = \sqrt{\varepsilon_p^2 + \varepsilon_{\text{Solar Resource}}^2 + \varepsilon_{\text{Interannual Variability}}^2 + \varepsilon_{\text{Transposition to Plane of Array}}^2 + \varepsilon_{\text{Soiling}}^2 + \varepsilon_{\text{Other Model Factors}}^2} \]

Root Sum of the Squares
• Satellite data is tuned with ground data
• Component sum GHI eliminates cosign error of secondary standard pyranometer

<table>
<thead>
<tr>
<th>Source</th>
<th>Ground</th>
<th>Tuned Satellite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolarAnywhere V3.2 GHI</td>
<td>n/a</td>
<td>5%</td>
</tr>
<tr>
<td>Secondary Standard GHI</td>
<td>3.5%¹</td>
<td>2.6%</td>
</tr>
<tr>
<td>Component Sum GHI</td>
<td>2.1%²</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

2. Ibid.
INTERANNUAL VARIABILITY

Uncertainty is climate dependent (example site shown here)

- Annualized and 4-month cumulative distribution functions (CDFs)

<table>
<thead>
<tr>
<th>Source</th>
<th>Low Interannual Variability</th>
<th>High Interannual Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolarAnywhere V3.2</td>
<td>2.5%</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yearly Dissection</th>
<th>Data Points</th>
<th>Avg (µ)</th>
<th>Std dev (σ)</th>
<th>RE (σ/µ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Year</td>
<td>18</td>
<td>2,029,496</td>
<td>57,712</td>
<td>2.84%</td>
</tr>
<tr>
<td>Four-month</td>
<td>5,832</td>
<td>2,029,023</td>
<td>50,270</td>
<td>2.48%</td>
</tr>
</tbody>
</table>

\[+0.341 (σ)\]
\[-0.341 (σ)\]
TRANSPOSITION TO POA

Uncertainty comprises Decomposition and Transposition to POA
- Decomposition models estimate DHI and DNI given GHI
- Can estimate or measure DHI
- Transposition to POA is calculated based on plant type

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeled Diffuse</td>
<td>12.7%<sup>1,2</sup></td>
</tr>
<tr>
<td>Measured Diffuse</td>
<td>8.0%<sup>3</sup></td>
</tr>
<tr>
<td>Measured Tracking DNI/Diffuse</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

1. Gueymard, C.A., From Global Horizontal To Global Tilted Irradiance, Solar 2008 ASES
2. Lave, M et al., Evaluation of Global Horizontal Irradiance to Plane of Array Irradiance Models at Locations across the United States, Sandia PV Performance Workshop
SOILING RATES

- Blanket annual estimate between 1-5%
- Measured soiling allows for determination of soiling ramp rates
- Can confidently model:
 - Monthly estimates
 - Max soiling value
 - Frequency of precipitation (cleaning) events

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated</td>
<td>4.0%</td>
</tr>
<tr>
<td>Measured – GroundWork PVSOIL</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Source Uncertainty
Estimated
-
- Measured – GroundWork PVSOIL
1.0%
QUANTIFYING GAINS: FINANCIAL ASSUMPTIONS

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CapEx Cost</td>
<td>$1.50/ watt</td>
</tr>
<tr>
<td>Unlevered ATIRR</td>
<td>7%</td>
</tr>
<tr>
<td>Gross Margin</td>
<td>75%</td>
</tr>
<tr>
<td>Debt Term</td>
<td>20 years</td>
</tr>
<tr>
<td>Debt Rate</td>
<td>5%</td>
</tr>
<tr>
<td>Debt Size</td>
<td>1.0 P99 DSCR</td>
</tr>
<tr>
<td>NPV Discount Rate</td>
<td>8%</td>
</tr>
</tbody>
</table>
PROJECT VALUE GAINS

<table>
<thead>
<tr>
<th>Ground Measurements</th>
<th>Project Uncertainty</th>
<th>NCF_{p99} %</th>
<th>$/W Gain</th>
<th>ROI on 25MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite Only</td>
<td>10.2%</td>
<td>19.5%</td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>Satellite + Secondary Standard GHI</td>
<td>8.6%</td>
<td>20.5%</td>
<td>$0.011</td>
<td>5.3X</td>
</tr>
<tr>
<td>Satellite + Secondary Standard GHI + Soiling</td>
<td>8.4%</td>
<td>20.6%</td>
<td>$0.012</td>
<td>5.0X</td>
</tr>
<tr>
<td>Satellite + Secondary Standard GHI + Diffuse + Soiling</td>
<td>6.6%</td>
<td>21.7%</td>
<td>$0.022</td>
<td>8.8X</td>
</tr>
<tr>
<td>Satellite + Secondary Standard GHI + DNI/Diffuse + Soiling</td>
<td>4.9%</td>
<td>22.7%</td>
<td>$0.035</td>
<td>8.3X</td>
</tr>
</tbody>
</table>
QUESTIONS & ADDITIONAL RESOURCES

• Literature:
 - https://www.solaranywhere.com/validation/leadership-bankability/

• Recorded Webinar:

• 5 Factors of Bankable Solar Resource Data:

• Company Websites:
 - https://www.grndwork.com
 - https://www.cleanpower.com or https://www.solaranywhere.com
Questions and Answers

Thank you for joining us

Additional Questions?
Skip Dise, skipdise@cleanpower.com
YOUR PARTICIPATION

Open and hide your control panel

Join audio:
- Choose “Mic & Speakers” to use VoIP
- Choose “Telephone” and dial using the information provided

Submit questions and comments via the Questions panel

Note: Today's presentation is being recorded and will be provided within 48 hours.
PRESENTERS

Skip Dise
Lead Product Manager
Clean Power Research

John Gaglioti
Principal Engineer
GroundWork

Justin Robinson
Technical Director
GroundWork

Ann Gaglioti
CEO
GroundWork
Poll Question
Poll Question
Poll Question
• Solar industry leader for MET equipment and services
• Early entrant working with NREL in 2008
• HQ in Monterey California
• Shop in Southern California
• US, Mexico and Canada
• 40 full time staff