The Role of Energy Storage in Off- and On-Grid Electric Power Systems

Prof. Dr.-Ing. João Tavares Pinho

Full Professor at the Federal University of Pará - UFPA
Researcher of Group of Studies and Development of Energy Alternatives - GEDAE
President of the Brazilian Solar Energy Association – ABENS
GROUP OF STUDIES AND DEVELOPMENT OF ENERGY ALTERNATIVES

- Founded in November 1994 at the Federal University of Pará, Brazil

- Activities on Solar and Wind Energy, Hybrid Systems, Energy Efficiency and Energy Quality

- Activities of teaching, research, project development and implementation, consulting, etc.

- Currently has 37 members (5 professors, 1 secretary, 1 technician, and graduate, undergraduate and high school students)
BRAZILIAN SOLAR ENERGY ASSOCIATION

- Non-profit legal entity with academic and scientific character

- Founded on February 17th, 1978

- Reactivated on January 24th, 2007

- Promotes Solar Energy *lato sensus* (direct solar, wind, hydro, biomass, etc.)

- Publishes a Scientific Journal *(RBENS)* and an Informative Report

- Organizes biannual congresses *(CBENS)* and annual meetings
Storage is the Achilles' heel of any energy systems

✓ There is no way of supplying dispatchable (reliably and continuously) energy without storing it

✓ Fuel tank, nuclear fuel depot, water dam, battery, etc.

✓ Environmental impacts are mainly due to storage and transportation
Introduction

✓ Types of electricity storage frequently used:

- lead-acid batteries: cheaper, low energy density

- Redox-flow batteries: longer lifetime, complicated operation

- Lithium-ion batteries: high energy density, protection required

✓ Costs are still a barrier (expected cost drop for batteries)
World’s first microgrid

The Manhattan Pearl Street Station (coal)
September 4\textsuperscript{th}, 1882 (136 years)
DC microgrid (82 consumers / 400 lamps)

In 1884 (508 consumers / 10,164 lamps) –
519 \% / 2,441 \%

Edison Illuminating Company (T. A. Edison) (now GE)

In the following four years 58 DC microgrids were installed

Afterwards, the transformation to AC grids, as monopoly regulated by the government (extinction of the DC microgrids – return after 2009)
Off-grid usage

✓ Energy sources frequently used:

- Fuel generators (diesel)
- Solar (photovoltaics)
- Wind (small size)
- Hydro (small size)
- Biomass (combustion, gasification, biogas)

✓ Hybrid systems (two or more sources and storage)
Brazilian electricity system

Approx. 8.5 million km²
Almost 200 million inhabitants

Source: Adapted from MME
Typical off-grid load curves
The energy from the renewable sources (and/or storage) is used to supply the load during the periods of low demand or to complement the non-renewable generation.
The non-renewable generation (and/or storage) functions as a back-up system, supplying the load during periods of high demand and low or no renewable generation.
Automatic operation and control
“A SmartGrid is an electricity network that can intelligently integrate the actions of all users connected to it – generators, consumers, and those that do both – in order to efficiently deliver sustainable, economic and secure electricity supplies.” (EU Report, 27)

“A **smart grid** is an electrical grid which includes a variety of operational and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficient resources. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.” (United States Federal Energy Regulatory Commission.
Smart grids

**THE ELECTRIC GRID: PRESENT AND FUTURE**

**PRESENT**
- Electricity produced by a central power plant, flows one way to customers
- Sub stations convert high voltage to lower voltage

**FUTURE**
- Electricity produced by a central power plant, wind turbines and solar panels, flows to customers
- Industrial customers both consume and produce electricity
- Industrial customers communicate usage information back to the power provider
- Electricity is stored in utility batteries
- Residential and business customers both consume and produce electricity using solar panels and wind turbines
- Residential and business customers communicate usage information back to the power provider
- Smart appliances, electric cars and street lights are some of the devices that will communicate to the power provider
- Electricity is stored in batteries

**REFERENCES**

Copyright: Shutterstock 2014
www.shutterstock.com
Smart Microgrids

• ISOLATED: Rural Electrification (limited resources, Storage)

• INTERCONNECTED: “Prosumers” (Distributed Energy Resources – Distributed Generation; Storage; Demand Response; Smart Devices - Inverters, BMS, Meters, etc.)
NECESSARY FUNCTIONAL CAPACITIES

- **Monitoring:** Knowledge of the situation in real time; Knowledge of energy quality; Flow analyses of distributed load/generation; Use of GIS

- **Control:** Microgrid management; Distributed Energy Resources (DER) dispatch; Automatic circuit reconfiguration.

- **Forecast:** Short-term forecast of the DER; Long-term forecast of energy production; Contingency analyses.

- **Optimization:** Voltage optimization; Energy flow optimization; Adaptive protection.
The **distribution grid** is expected to become a **platform for the supply and acquisition of products and services that go beyond the mere electrical energy purchase and/or sale from/to the utilities** (changes the roles of utilities and consumers)

The possibility not only to **generate electricity** but also to **time-shift its consumption**, for example, plays a major role to address issues such as **feeders overload, distribution losses, power quality**, and the increase of the admissible level of **non-dispatchable renewable energy** resources such as photovoltaic and wind
On-grid usage

✓ Systems can be operated as **controlled units** to meet local needs of the distribution grid

✓ System size may vary, depending on policies, and type of service to be provided

✓ Amounts of generation and storage capacity must be appropriately adjusted to each other

✓ Ancillary services can be offered even by residential and commercial prosumers: arbitrage, according to different tariff posts; reactive power compensation; load-shift; loading limits on feeders; self-consumption; phase balancing, etc.
On-grid usage

Figure 2 – Equivalent tariff as a function of the battery cost for different interest rates.
OBJECTIVES

Development of laboratory infrastructures with hybrid systems for electricity generation and smart microgrids

Development of studies and research on these topics

Capacity building at technical, undergraduate and graduate levels
GEDAE´s Microgrid
GEDAE´s Microgrid

PVG-01 and Sunny SensorBox (1st module on the right)

DG and anemometer (roof)

PVG-02 and PVG-03

INVB, INVG, GDC
GEDAE´s Microgrid

GDC (inside view)

BB-01 and BB-02

Sunny WebBox and Power Injector (from bottom to top)

Air and module temperature sensors
GEDAE´s Microgrid
GEDAE´s DC Microgrid
LSF’s Microgrid

Legendas
Linhas vermelhas: Energia em corrente contínua
Linhas pretas: Energia em corrente alternada
Linhas azuis: Comunicação entre as medições
LSF’s Microgrid
LSF´s Microgrid
Operational Strategies

- Hybrid systems as main grid;
- Electric grid supplying energy to all systems, or to one system only;
- Diesel generator supplying all systems, only one system and/or the electric grid.
## Operational Scenarios

<table>
<thead>
<tr>
<th>Sources</th>
<th>Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Generator (DG)</td>
<td>HSs</td>
</tr>
<tr>
<td></td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>MG + HSs</td>
</tr>
<tr>
<td>Hybrid Systems (HSs)</td>
<td>HSs</td>
</tr>
<tr>
<td></td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>MG + HSs</td>
</tr>
<tr>
<td>Main Grid (MG)</td>
<td>HSs</td>
</tr>
</tbody>
</table>
Homepages:  http://www.gedae.ufpa.br
http://www.abens.org.br

E-mail:  jtpinho@ufpa.br
contato@abens.org.br
THANKS
FOR YOUR
ATTENTION!