Agri-PV in India
Landscape, Opportunities and Potential

Subrahmanyam Pulipaka
Chief Executive Officer
National Solar Energy Federation of India
16 Agrivoltaic plants in operation in India

https://buff.ly/3tNHxsc
Some Findings

- Very little awareness and experience with co-location of solar panels and commercial crops in India
- Current policy framework does not provide sufficient regulatory clarity
- Farmer was usually not involved before the construction of the plant
- Cleaning a challenge
Joint Statement : IRENA Coalition for Action 2021

Under IRENA Coalition for Action 2021

Joint Statement
Prepared by the Coalition and Endorsed by around 50 International Entities in Renewable Energy Sector.

JOINT STATEMENT
ADVANCING RENEWABLES IN AGRICULTURE TO MEET SDGS AND CLIMATE OBJECTIVES
India’s Land Use Patterns

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forests</td>
<td>Includes all lands classed as forest under any legal enactment dealing with forests or administered as forests, whether state-owned or private, and whether wooded or maintained as potential forest land. The area of crops raised in the forest and grazing lands or areas open for grazing within the forests should remain included under the forest area.</td>
</tr>
<tr>
<td>Area under non-agricultural use</td>
<td>Includes all lands occupied by buildings, roads and railways or under water, e.g. rivers and canals and other lands put to uses other than agriculture.</td>
</tr>
<tr>
<td>Barren and uncultivable land</td>
<td>Includes all barren and unculturable land like mountains, deserts, etc. Land which cannot be brought under cultivation except at an exorbitant cost, should be classed as unculturable whether such land is in isolated blocks or within cultivated holdings.</td>
</tr>
<tr>
<td>Permanant pastures & other grazing land</td>
<td>Includes all grazing lands whether they are permanent pastures and meadows or not. Village common grazing land is included under this head.</td>
</tr>
<tr>
<td>Land under miscellaneous tree crops</td>
<td>Includes all cultivable land which is not included in ‘Net area sown’ but is put to some agricultural uses. Lands under Casurina trees, thatching grasses, bamboo bushes and other groves for fuel, etc. which are not included under ‘Orchards’ should be classed under this category.</td>
</tr>
<tr>
<td>Culturable waste land</td>
<td>Includes lands available for cultivation, whether not taken up for cultivation or taken up for cultivation once but not cultivated during the current year and the last five years or more in succession for one reason or other. Such lands may be either fallow or covered with shrubs and jungles, which are not put to any use.</td>
</tr>
<tr>
<td>Current Fallow</td>
<td>Represents cropped area, which are kept fallow during the current year. For example, if any seeding area is not cropped against the same year it may be treated as current fallow.</td>
</tr>
<tr>
<td>Fallow land other than Current Fallow</td>
<td>Includes all lands, which were taken up for cultivation but are temporarily out of cultivation for a period of not less than one year and not more than five years.</td>
</tr>
<tr>
<td>Net area sown</td>
<td>Represents the total area sown with crops and orchards. Area sown more than once in the same year is counted only once.</td>
</tr>
</tbody>
</table>
Types of Agri-PV Plants in India

- Interspace farming
- Cultivation of crops between the space of two rows (most commonly observed pattern)
- Farming below the panels installed at conventional structure height
- Farming below the panels which are installed at latitude tilt angle, where tractors cannot be used for cultivation and manual cultivation is done
- Farming below elevated structure
- Agriculture below elevated structure (at least 3m)

AgriVoltaics in India
105 kW CAZRI plants Jodhpur, Rajasthan
1 MW GIPCL and Anand Krishi Agricultural University, Amrol, Gujarat
Different from PV Rooftop

1 MWp chicken farm rooftop, Kolar, Karnataka, India
1 MW GIPCL plant Amrol, Gujarat
100 kW NISE plant near Gurgaon, Haryana
14.4 kW Jain Irrigation private research plant, Jalgaon, Maharashtra
7 kWp, Junagadh Agricultural University, Junagadh
7 kWp, Junagadh Agricultural University, Junagadh
1 MW GIPCL and Anand Krishi Agricultural University, Amrol, Gujarat
1 MW GIPCL plant Vastan, Gujarat
1 MW GSECL plant Panandharo, Gujarat
1 MW Aravalli District, Gujarat

Abellon CleanEnergy
400 kWp Mahindra Susten’s Agro Photovoltaic Model, Tandur, Telangana
3 kW Hinren Agri-PV Rooftop (APVRT) System, Bangalore
Challenges

Trade-off

• In the existing installations throughout the country, the trade-off between the extra cost incurred for facilitating agriculture below the solar panels and the resulting revenue from the cultivation is yet to be thoroughly quantified. Cost involved in a higher structure and costs for effectively cleaning solar panels at greater height have been identified as the major constraints for developers.

Stakeholder Coordination

• In most reviewed cases, operation of the solar plant and farming activities are conducted by two different parties. Miscoordination between stakeholders frequently compromises the efficiency in Agrivoltaic plants.

Performance analysis

• There is a lack of data investigating potential influence of different solar panel technologies and solar panel spacings on crop growth. There is no bifacial panels tested so far except in solar greenhouses by Jain Irrigation. No known research has been conducted to measure the influence of the vegetation on the performance of the solar panel.
Challenges

Land Use Classification

- The explicit mention of agrivoltaics is necessary in any law, scheme or policy when cultivable land is used with PV and an agrivoltaic system could be designated in the land use plan as a "special area for agrivoltaics". A prerequisite shall be that a minimum of 80% of the total surface is available and used for agricultural purposes so that the farmer or landowner continues to receive the agricultural subsidy allocated to the area in which case statistically the area does not count as sealed.

Technical Norms and Quality Standards

- As of now there are no regulations on land use with solar PV under the Indian legal framework. To ensure dual use of land through Agrivoltaics, and to avoid solar energy yield at the cost of agricultural purpose, criteria need to be set to avoid the installation of improper agrivoltaic installation that neglect agricultural purposes.

Financial Incentives for Agrivoltaics in India

- The improvement of livelihoods of the partnering farmers must be prioritised and if possible, annual incomes doubled for farmers with less than 2 hectares. To consider Agrivoltaics in future feed-in-tariff calculations and ceiling price setting for tender, the figures stated in the recommendations chapter of this report should be considered.
India’s Agri-Solar Scheme - KUSUM

Component A
- 10,000 MW of Decentralized ground/stilt mounted grid connected plants
- Capacity 500 kW to 2 MW (Farmers/cooperative /panchayat /Farmers producers organisation)
- GOI will provide Procurement Based Incentive (PBI) to the DISCOMs @40 paisa/kWh or Rs 6.60 lakhs/MW/year up to 5 years whichever is less

Component B
- Installation of 2 Million Stand-alone Pumps
- Farmers can setup Standalone solar pumps up to 7.5HP replacing existing diesel pump sets
- Centre Financial assistance (CFA) and state govt to share 30 % of stand-alone solar pump cost each

Component C
- Solarization of 1 Million Grid Connected Agriculture Pumps
- Solar PV capacity up to 2 times of pump capacity in kW terms, to enable sale of excess power to DISCOMs
- Centre and state to share 30 per cent of pump cost each
Ongoing APV Tenders

<table>
<thead>
<tr>
<th>State</th>
<th>Project Name</th>
<th>Tariff</th>
<th>Bid Size</th>
<th>Commissioning</th>
<th>Bid Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNEDA Uttar Pradesh</td>
<td>APV Solar, 106 MW</td>
<td>INR 3.10/ kWh</td>
<td>0.5 - 2 MW</td>
<td>12 months</td>
<td>15 June 2021</td>
</tr>
<tr>
<td>OREDA Odisha</td>
<td>APV Solar, 500 MW</td>
<td>INR 3.08/ kWh</td>
<td>0.5 - 2 MW</td>
<td>9 months</td>
<td>22 June 2021</td>
</tr>
<tr>
<td>MPUVNL Madhya Pradesh</td>
<td>APV Solar, 270 MW</td>
<td>INR 3.07/ kWh</td>
<td>0.5 - 270 MW</td>
<td>9 months</td>
<td>21 June 2021</td>
</tr>
</tbody>
</table>

“Cultivable land may also be used if the Solar plants are set up on stilts where crops can be grown below the stilts and sell RE power to DISCOMs.” Source: [KUSUM Scheme by MNRE](https://www.mnre.gov.in)
India’s Agri-PV Potential

At a glance, India’s Agri-PV potential can be visualized through the graph below, which illustrates the total arable land, dry land regions, and irrigation land, each represented as a percentage of the total land area.

- **Total Arable Land**: 895 GW
- **Dry Land Regions**: 673 GW
- **Irrigation Land**: 187 GW

This distribution highlights the vast potential for integrating solar energy generation within agricultural landscapes, thus contributing to a sustainable energy-water-food nexus approach.