

GHG Emissions Reductions Testing for Thermosyphon Systems in China

LI Bojia, China Academy of Building Research IEA SHC Solar Academy Webinar

Content

1	Background & Goal
2	Modelling & Testing
3	GHG Emission Reduction
4	Standard Development

Subtask B - Background

Thermosyphon systems represent the majority of installed SHW systems

Distribution by type of system for the total installed glazed water collector capacity in operation by the end of 2020

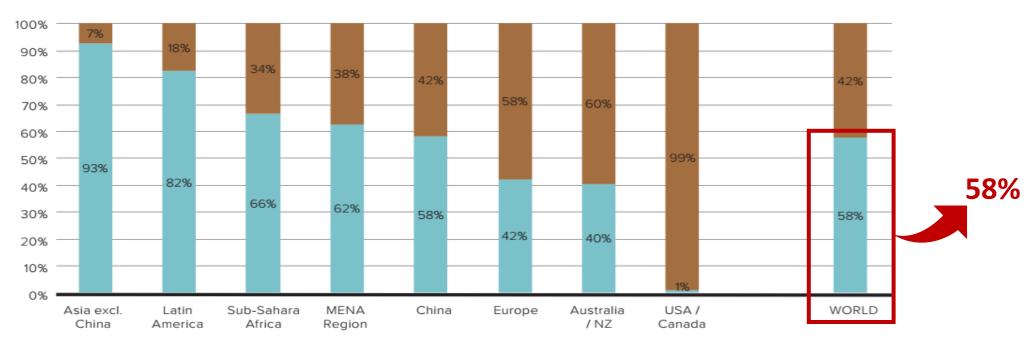


Figure 48: Distribution by type of system for the total installed glazed water collector capacity in operation by the end of 2020

Pumped solar heating systems
Thermosiphon solar heating systems

Source: Solar Heat Worldwide 2023, Werner Weiss, Monika Spörk-Dür

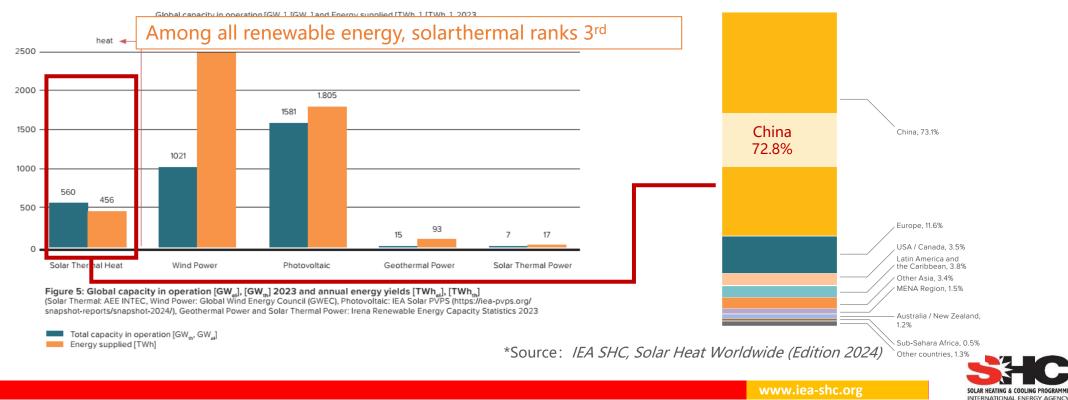
SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Subtask B - Goal


To promote thermosyphon hot water systems by

- Improving convenience and performance better design and management tech
- Improving durability and reliability failure modes and effects in different region
- Investigate the Energy-saving & GHG reduction performance

how thermosyphon systems contribute to carbon peak & carbon neutral



Background

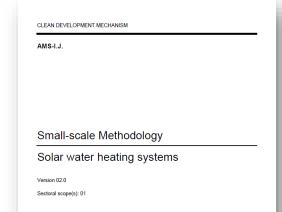
- According IEA SHC, China accounts for 72.8% of world's total installed solar collectors.
- SHW systems is making significant contributions to energy saving and carbon reduction.
- It's hard to calculate SHW systems' contributions to carbon neutral goal.

Current standard

GHG reduction

Total collector area

Annual reduction per m² collector


- Current method: China lacks GHG emission reduction assessment methods for SHW,
 - only 4 methods applied in CCER(China Certified Emission Reductions):
 - CCER method for solar thermal power generation
 - CCFR method for carbon sink of forests.
 - CCER method for grid connected offshore wind power generation
 - CCER method for mangrove forest construction
- International method: CDM(Clean Development Mechanism)

AMS-I.J.: Solar water heating systems (SWH)-Version 2.0

- System simulation (by RET Screen)
- System metering (monthly)
- Stipulated energy saving:

Annually: $450 \text{ kWh/(a \cdot m^2)}$; Not annually: $300 \text{ kWh/(a \cdot m^2)}$

*Source: AMS-I.J.: Solar water heating systems (SWH)-Version 2.0

Clean Development Mechanism: Small-scale Methodology for Solar water heating systems

Differences

- A big difference between China and Europe causes differences in GHG reduction
 - Solar resource: 4 different regions
 - System type: evacuated tube collectors
 - Hot water demand: High rise department building
- Therefore, other countries' experience is not quite suitable for GHG reduction in China

High rise department buildings are more popular than single family houses

*Photos: Sunrain

Content

1	Background & Goal
2	Modelling & Testing
3	GHG Emission Reduction
4	Standard Development

Approach

To ensure the reliability of method, the research includes these activities:

General procedure

Long-term modelling

Long-term verification

Different location

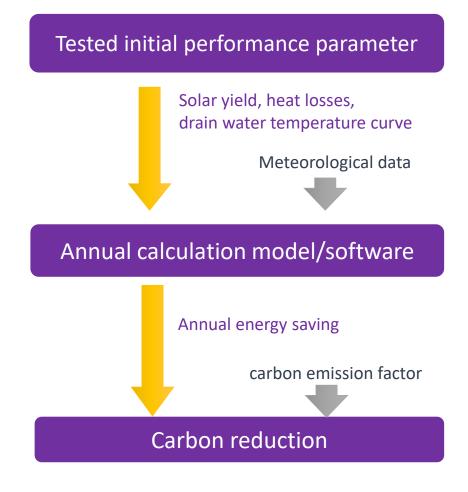
General procedure:

Generate a procedure to evaluate long-term GHG reduction performance of SHW systems Initial Parameters were determined by testing according to ISO 9459-2 and GB/T 18708-2002

Long-term modelling:

A model for annual energy saving and carbon reduction by daily calculation was developed

Long-term verification:


A long-term testing field has been established Samples were tested to verify the model with long-term operation data

Performance in different locations:

Simulation of the GHG reduction of SHW systems in different cities Reach total GHG reduction for SHW systems in China

General procedure

- 1. Get initial performance parameter with lab testing ISO 9459-2 & GB/T 18708-2002 are the main reference For compact systems, drain water temperature remains the same as no cold water added.
- 2. Calculate annual energy output and saving with a software

Through daily calculation, method is similar to ISO 9459-2. Software was developed to make it easier.

3. Convert annual energy output to carbon reduction
Electric water heater is used as reference system, hence
carbon emission factor of electricity power is used to
calculate the carbon reduction.

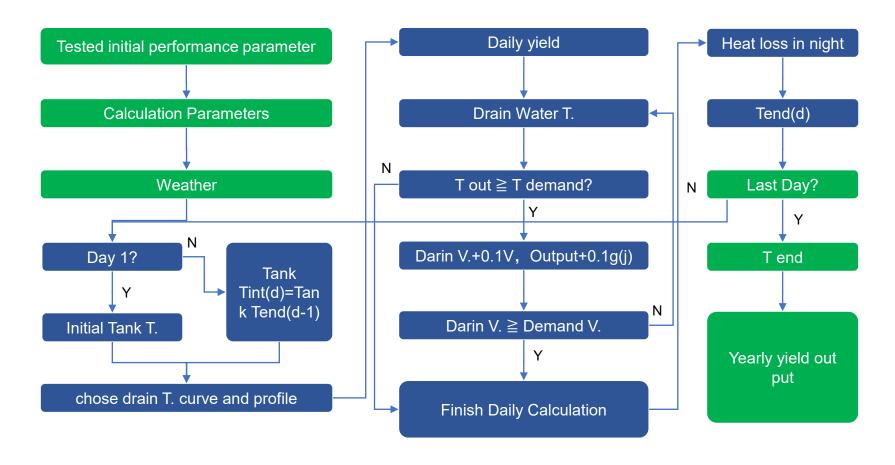
Initial parameters

Solar yield parameters, heat loss coefficient, and drain water temperature curve of SHW system sample should be tested in laboratory according to ISO 9459-2.

If the sample is a compact system, it should be tested according to GB/T 18708-2002, and get drain water temperature curve with same output temperature vs 1 time of tank volume.

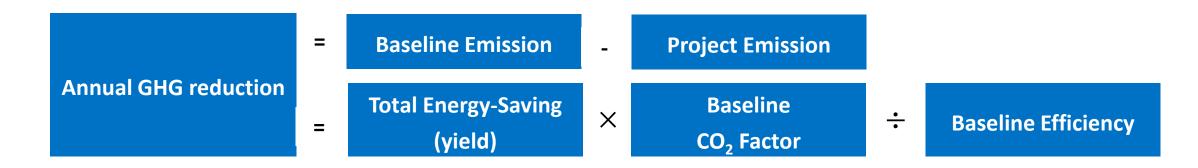
Standard testing (6 days)

Coefficient: $a_1 \ a_2 \ a_3 \ f_v \ g_v$ $Q = a_1 H + a_2 \Big[t_{a(day)} - t_{(main)} \Big] + a_3$ ※用太阳热水系统热性能 试验 方法


Tank heat loss testing

Heat loss coefficient U_s $U_s = \frac{\rho_w c_{pw} V_s}{\Delta \tau} \ln \left[\frac{t_i - t_{as(av)}}{t_f - t_{as(av)}} \right]$

Calculate annual energy output and saving with a software


The annual energy-saving of SHW system should be determined by daily calculation Calculation procedure is similar with that in ISO 9459-2.

Convert annual energy output to carbon reduction

GHG reduction of SWH system could be calculated with following equation:

- Baseline could be electric water heater/boiler or gas fired boiler
- According to National Standards, energy efficiency for electric water heater/boiler: 0.95
 for gas fired boiler: 0.86
- CO_2 emission factor for electricity: 0.5 kg/kWh; for gas: 0.2 kg/kWh

Long-term testing

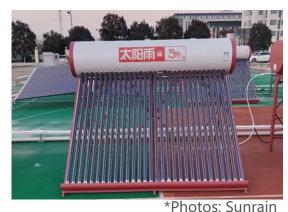

- For verification, a carbon reduction testing field was established in Jiangsu province
- 25 types of solar thermal system have been installed for a long-term testing:
 - ✓ Compact solar water heating system
 - ✓ Closed loop solar water heating system
 - ✓ Solar heat pump water heater
 - ✓ Air source heat pump water heater
 - ✓ PV water heater
 - ✓ PV direct-driven air-conditioner

Photo: Solareast

Long-term testing results

Compact (open) system

5 4,5 4,5 4,5 3,5 3 2,5 2 1,5 1 0,58 0,5 0,75 0,65 0,65 0,63 0,63 0,63 0,43 0,55 0,49 系统1 系统2 系统3 系统4 系统5 系统6 系统7 系统8 系统9 系统10 ■日均得热MJ/(m²·d) ■日均碳減排 kg/(m²·d)

Avg. daily energy-saving: 2.0 to 4.7 MJ/m² Avg. daily GHG reduction: 0.33 to 0.75 kg/m²

Pressured (closed) system

Avg. daily energy-saving: 0.8 to 2.3 MJ/m² Avg. daily GHG reduction: 0.14 to 0.50 kg/m²

Verification

2 compact systems and 2 pressurized systems have been chosen to conduct the laboratory testing according to ISO 9459-2 and GB/T 18708 for long-term performance calculations and verification. By comparing the calculated and tested average daily solar yield, the deviation is within 12%, verifying the accuracy of software calculations.

INPUT

- Measured solar irradiation, etc.
- System parameters: collector area, heat storage tank volume, etc.

OUTPUT

Simulated versus tested Avg. daily solar yield

		Testing Results		Calculated Result			
Sample	System type	Avg. daily solar yield	Avg. daily GHG reduction	Daily solar yield	Avg. daily GHG reduction	Deviation	
		[MJ/(m²·d)]	[kg/(m²·d)]	[MJ/(m²·d)]	[kg/(m²·d)]		
1	Compact (open) system	3.62	0.58	3.19	0.52	11.9%	
2	Compact (open) system	3.18	0.51	2.97	0.48	6.6%	
14	Balcony (closed) system	0.86	0.14	0.84	0.14	1.2%	
15	Balcony (closed) system	1.76	0.28	1.71	0.28	2.8%	

Content

_1	Background & Goal
2	Modelling & Testing
3	GHG Emission Reduction

Performance Analysis in different region

- GHG reduction have great difference in different cities
- 34 cities with different solar energy resource have been used

Verified models

Different solar regions

34 cities with different solar energy resource have been used

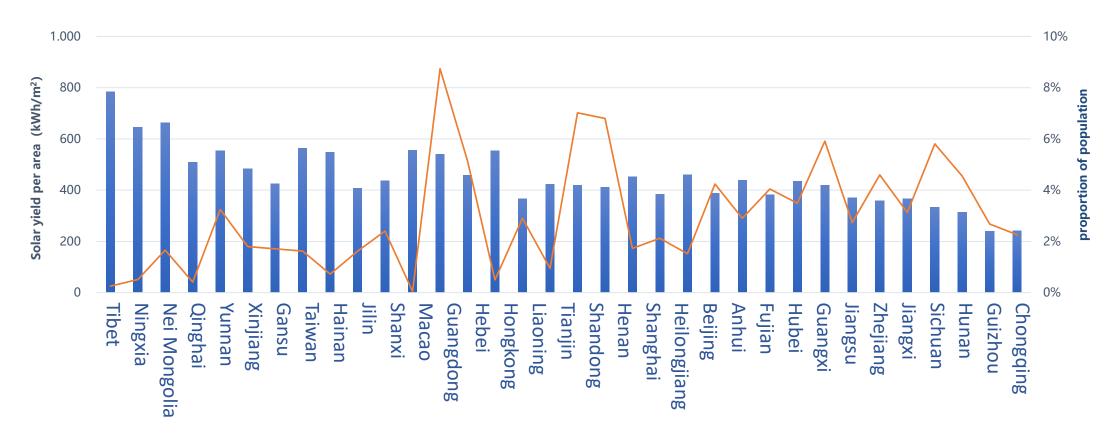
GHG reduction analysis

Performance Analysis in different regions

Annual heat production and carbon reduction results in different cities in China

Sample	Province	City	Solar energy resources	Horizontal radiation (MJ/m²)	Annua solar yield (MJ/m²)	Annua solar yield (kWh/m²)	Annual carbon reduction (kg/m²)
1	Tibet	Lhasa	Extremely rich	7163.27	2820.31	783.42	412.33
2	Ningxia	Yinchaun		5947.14	2323.00	645.28	339.62
3	Nei Mongolia	Hottot		5757.01	2384.43	662.34	348.60
4	Qinghai	Xining		5668.91	1835.39	509.83	268.33
5	Yunnan	Kunming	A la considerat	5638.01	1991.53	553.20	291.16
6	Xinjiang	Urumqi	Abundant	5149.22	1739.47	483.19	254.31
7	Gansu	Lanzhou		5069.71	1527.98	424.44	223.39
8	Taiwan	Taibei		5059.38	2029.35	563.71	296.69
9	Hainan	Haikou		5043.01	1976.08	548.91	288.90
10	Jilin	Changchun		5037.14	1470.26	408.41	214.95
11	Shanxi	Taiyuan		5023.83	1570.52	436.26	229.61
12	Macao	Macao		5017.35	2003.93	556.65	292.97
13	Guangdong	Guangzhou	Diala	4995.84	1944.07	540.02	284.22
14	Hebei	Shijiazhuang	Rich	4970.02	1649.64	458.23	241.18
15	Hongkong	Hongkong		4926.04	1991.38	553.16	291.14
16	Liaoning	Shenyang		4909.24	1320.54	366.82	193.06
17	Tianjin	Tianjin		4806.00	1524.51	423.48	222.88

Performance Analysis in different regions


Annual heat production and carbon reduction results in different cities in China

Sample	Province	City	Solar energy resources	Horizontal radiation (MJ/m²)	Annua heat yield (MJ/m²)	Annua heat yield (kWh/m²)	Annual carbon reduction (kg/m²)
18	Shandong	Jinan		4801.50	1507.62	418.78	220.41
19	Henan	Zhengzhou		4785.55	1481.77	411.60	216.63
20	Shanghai	Shanghai		4728.68	1627.61	452.11	237.95
21	Heilongjiang	Harbin		4695.60	1380.66	383.52	201.85
22	Beijing	Beijing		4663.48	1655.48	459.86	242.03
23	Anhui	Hefei		4499.39	1395.81	387.73	204.07
24	Fujian	Fuzhou		4482.13	1576.56	437.93	230.49
25	Hubei	Wuhan	Rich	4466.06	1373.12	381.42	200.75
26	Guangxi	Nanning		4417.63	1568.71	435.75	229.34
27	Jiangsu	Nanjing		4377.84	1510.15	419.49	220.78
28	Shaanxi	Xian		4368.51	1333.86	370.52	195.01
29	Zhejiang	Hangzhou		4333.13	1292.59	359.05	188.98
30	Jiangxi	Nanchang		4151.59	1321.10	366.97	193.14
31	Sichuan	Chengdu		4087.70	1200.59	333.50	175.52
32	Hunan	changsha		3986.47	1128.89	313.58	165.04
33	Guizhou	Guiyang	Normal	3648.35	864.43	240.12	126.38
34	Chongqing	Chongqing	Normal	3186.10	872.24	242.29	127.52

Average GHG reduction

Average GHG reduction is weighted according to the population of each region

2

Average GHG reduction

Average GHG reduction is weighted according to the POPULATION of each region

Average solar yield: 419.39 kWh/m²

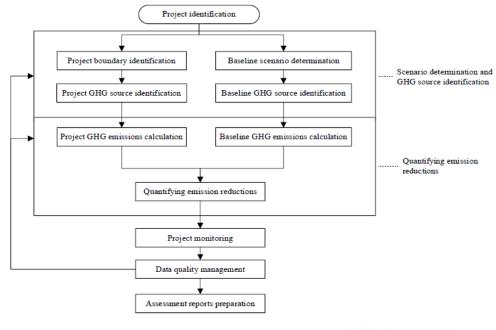
Average GHG reduction: 97.63 to 220.73 kg/m²

According Solar Heat Worldwide 2024, total installed collector in China is 545 million m²

For all solar hot water systems: Annual GHG reduction is 53 to 120 million tonnes of CO₂

Content

4	Standard Development
3	GHG Emission Reduction
2	Modelling & Testing
1	Background & Goal


National Standard

Research results above support a Chinese National Standard

National standard: *Technical specification at the project level for assessment of greenhouse gas emission reductions – Solar thermal applications*Approved in May 2024, an English version is available

National Standard

This document specifies the assessment content, assessment procedures, scenario
determination, greenhouse gas (GHG) sources identification, quantifying emission
reductions, monitoring, data quality management, and assessment reports preparation

- Based on GB/T 33760-2017
- For implemented projects, monitoring procedures shall be adopted, when not available, use simplified method.
- For unimplemented projects,
 data from feasibility study reports etc.

Table B.1 Annual heating energy per collector area for projects supplying hot water with solar energy

in megawatt hours per square metre (kWh/m²)

Classification of solar energy resource	Annual heating energy per collector area
Solar energy richest region	735
Solar energy richer region	630
Solar energy rich region	441
Solar energy normal region	350

Table B.4 Annual industrial heating energy per collector area for projects providing industrial heating with solar energy

in megawatt hours per square metre (kWh/m²)

Classification of solar energy resource	Annual industrial heating energy per collector area
Solar energy richest region	525
Solar energy richer region	450
Solar energy rich region	315
Solar energy normal region	250

Summary

- Due to different solar resources, system types and hot water demand profiles, it's necessary to develop an assessment method for GHG reduction of SHW systems in China.
- An assessment method for the annual energy-saving and GHG reduction of SHW systems based on daily calculation was proposed.
- A testing center has been established, and long-term energy-saving testing was conducted for model verification.
- Reference values for GHG reduction of SHW systems in 34 Chinese cities have been proposed through this assessment method.
- This methodology would provide technical support for GHG reduction assessment in the solar thermal industry and the development of future international standards.

2

Thanks!

Li Bojia

China Academy of Building Research

E-Mail: libojia@outlook.com

www.iea-shc.org

in IEA Solar Heating and Cooling Programme (group 4230381)

X @IEASHC