

IEA-PVPS Task 13 Webinar -

Enabling 2nd life photovoltaics

Gernot Oreski, Gabriele Eder, Laura Bruckman, Roger French, Ulrike Jahn

18. April 2024

- The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization for Economic Cooperation and Development (OECD).
- The Technology Collaboration Programme was created with a belief that the future of energy security and sustainability starts with global collaboration. The programme is made up of thousands of experts across government, academia, and industry dedicated to advancing common research and the application of specific energy technologies.
- The IEA Photovoltaic Power Systems Programme (PVPS) is one of the Technology Collaboration Programme established within the International Energy Agency in 1993

IEA PVPS Tasks – 8 parallel Tasks

- Task 01 Strategic PV Analysis & Outreach
- Task 12 PV Sustainability
- Task 13 Reliability and Performance of PV Systems
- Task 14 High Penetration of PV Systems in Electricity Grids (terminated)
- Task 15 Enabling Framework for the Development of BIPV
- Task 16 Solar Resource for High Penetration and Large-Scale Applications
- Task 17 PV for Transport

VPS

- Task 18 Off-Grid and Edge-of-Grid Photovoltaic Systems
- Task 19 Grid Issues/Grid Integration (to be defined)

- ST1: Reliability of novel PV materials, components and modules (Marc Köntges)
- ST2: Performance and durability of PV applications (Anna Heimsath)
- ST3: Techno-economic key performance indicators (David Moser)
- ST4: Dissemination and outreach (Ulrike Jahn)

International collaboration: 180+ experts and contributors from 25 countries

https://iea-pvps.org/research-tasks/performance-operation-and-reliability-of-photovoltaic

Where to find documents & events – Updated Task

INTRANET

CONTACT

13 website

- A global reference on PV for policy and industry decision makers
- A global network of expertise for information exchange and analysis
- An impartial and reliable source of information
- → All information available at PVPS website: http://www.iea-pvps.org

Technology Collaboration Programme

International Energy Agency
Photovoltaic Power Systems Programme

Publications Research tasks Events About us

HOME > RESEARCH TASKS

Research tasks

ONGOING TASK

PAST PROJECT

IEA PVPS Task 13; Webinar 18th April 2024;

Enabling 2nd life photovoltaics

Development of a repair methodology for PV modules with damaged backsheets

Gabriele EDER, Yuliya VORONKO, Anika GASSNER, Raffael SCHIFFEREGGER OFI, Austrian Research Institute for Chemistry and Technology, Vienna, Austria.

Gernot ORESKI, Sonja FELDBACHER PCCL, Polymer Competence Center Leoben, Austria.

Background – Backsheet failures

Basic functions of a backsheet in the multi-material laminate PV-Module

• Electrical isolation

PVPS

- Mechanical protection
- Weathering protection
- Barrier against water vapour and oxygen
- Major consequence of backsheet failure are ground faults due to reduced insulation resistance which can cause inverter shutdown (resulting in power loss) and safety issues.
- Other possible defects include cracks in the inner or outer layer or throughout the BS laminate, delamination (from the encapsulant or within the BS laminate), or yellowing.
- A cracked BS no longer provides an effective barrier to moisture and air, which can lead to corrosion of connections and busbars within the internal circuitry, as well as polymer degradation within the module. Corrosion creates hotspots, which causes energy to be lost in the form of heat, leading to further decrease in performance and creates safety issues.

QUPOND

Backsheet Deemed Most Critical Material to Protect Solar Module

Examples for Backsheet failures

10

Example: timeline of crack formation in Polyamid-BSs

Repair = restore ALL functionalities of the BS

- \rightarrow fill the cracks (microcracks and deep, longitudinal cracks)
- \rightarrow provide a full-deck protective coating
- \rightarrow restore insulation resistance (under wet conditions (R $_{\rm iso}$)

Development of a repair methodology

Proof of concept....

Restoration of R_{iso} Stability upon accelerated aging (TC) Stability upon natural weathering (operative in the field)

System requirements:

Backsheet:

- clean and water-free surface/crack
- Filler/primer coating
 - low viscosity: easy to enter pores/penetrate
 - form a water vapour barrier
- **Barrier-coating**
 - diffusion barrier
 - electrically insolating
 - mechanically stable
 - weathering resistant

Possible solutions for coating:

- 1-K-system, air or humidity drying
- 2-K coating systems (curing via mobil UV or thermal dryer)

secure

- material compatibility coating backsheet
- good adhesion
- no migration

Ġ

Application for coating solution:

- Avoid solvents and dangerous substances
- Coating with brush, roller, spraying, spattle.....
- Curing: preferably under ambient conditions; otherwise thermally or via irradiation

Application of tapes or foils via an adhesive system:

- Surface pre-treatment might be necessary
- Adhesive has to have good wetting ability of the weathered surface

Multi-step process

- cleaning (mechanical wipping with damp towel) and drying
- coating (crack filling and continuous deck = protection/barrier layer)
- \rightarrow repair process in horizontal position preferred
- in the field: with module dismounted or
- in an external coating unit

Repair materials

Coatings

- + mod. polyurethan (2K)
- + flowable silicone (1K)

 $\rightarrow\,$ best results with layer thicknesses of at least 100 μm and optimally 200 μm

Tape /Film options

- + Repair tape with pressure sensitive adhesive
- + Adhesion of additional BS

Application

with

- + brush
- + spatula / wipper / squeegee
- + spray-coating

 \rightarrow applicable in one or twostep (with solvent) process

Repair and preventive maintenance of PV modules with degrading backsheets using flowable silicone sealant Guy Beaucarne, Gabriele Eder, Emmanuel Jadot, Yuliya Voronko, Wolfgang Mühleisen; at 38th EU PVSEC (2021) 5.DO.2.6. and PIP3492; DOI: 10.1002/pip.3492

Repair options for PV modules with cracked polyamide backsheets;

Y. Voronko, G. Eder, C. Breitwieser, W. Mühleisen, L. Neumaier, S. Feldbacher and G. Oreski,, at 37th EU PVSEC (2020) and Energy Sci Eng. 2021; 9: 1583– 1595. DOI: 10.1002/ese3.936

Crack filling and barrier layer

surface / BS airside

Successful repair

- Restoration of R_{iso} (wet leakage current test; IEC 61215-2 (MQT 15)
- Stability upon accelerated aging
- Stability upon natural weathering (operative in the field)

Test-case I : A preventive maintenance coating process was developed to stop the propagation of formed microcracks in weathered backsheets and to avoid the formation of deep backsheet cracks. The first test modules were coated in the field in June 2020 by (i) filling the surface near cracks of the BSs outer layer and (ii) additionally providing a full-deck barrier coating layer. First promising results on the long-term behaviour of the repair solutions exist after nearly 3 years now.

Test-case II : Repair of damaged BSs (fully cracked) with restoration of electrical insulation properties was performed on dismantled modules (insurance claim).Complete crack filling of full-cracked backsheets (longitudinal cracks) and permanent restoration of the electrical insulation properties was achieved. First promising results on the long-term behaviour of repair solutions with flowable silicone and polyurethane (2K) are obtained: the test-site with 12 repair-modules is in operation since summer 2021 (Vienna/Austria).

New challenges....

	Scenario	Aim	Method	Continued Use
Disr / s	nantled PV Modules system repowering	(Preventive) restoration of the insulation resistance (R _{iso})	Application of coating / central coating unit	Sale as 2 nd Life Modules
Cr	PV Modules with racked Backsheets	Crack filling & barrier coating to increase operative lifetime	Dismantling & on-site coating or application in a central coating system	Sale as 2 nd Life Modules
ا mc ir	PV Modules with punting/installation nduced BS defects	Local sealing of mechanical defect to ensure insulation resistance	Repair (with coating or tape) on-site	Planned re-use in the the PV-system
PV ind	' Systems with R _{ISO} luced inverter shut- down	Temporary (up to several years) restoration of the R _{iso} until repowering	Repair (with coating or tape) on-site	Dismantling & triage in the collection center (refurbishment or recycling

RelewPY

Objectives for further work

Repair strategies for refurbishment of PV modules with damaged BSs for different scenarios

- (preventive) restoration of insulation resistance of PV modules
- repair of defective BS (cracks)
- repair of mechanical damage due to transport or assembly

www.iea-pvps.org

Thank You for Your Attention!

Gabriele Eder gabriele.eder@ofi.at Gernot Oreski gernot.oreski@pccl.at

